Fast convolution quadrature based impedance boundary conditions
نویسندگان
چکیده
We consider an eddy current problem in time-domain relying on impedance boundary conditions on the surface of the conductor(s). We pursue its full discretization comprising (i) a finite element Galerkin discretization by means of lowest order edge elements in space, and (ii) temporal discretization based on Runge-Kutta convolution quadrature (CQ) for the resulting Volterra integral equation in time. The final algorithm also involves the fast and oblivious approximation of CQ. For this method we give a comprehensive convergence analysis and establish that the errors of spatial discretization, CQ and of its approximate realization add up to the final error bound.
منابع مشابه
Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملConvolution quadrature for the wave equation with impedance boundary conditions
We consider the numerical solution of the wave equation with impedance boundary conditions and start from a boundary integral formulation for its discretization. We develop the generalized convolution quadrature (gCQ) to solve the arising acoustic retarded potential integral equation for this impedance problem. For the special case of scattering from a spherical object, we derive representation...
متن کاملFast convolution quadrature for the wave equation in three dimensions
This work addresses the numerical solution of time-domain boundary integral equations arising from acoustic and electromagnetic scattering in three dimensions. The semidiscretization of the time-domain boundary integral equations by Runge-Kutta convolution quadrature leads to a lower triangular Toeplitz system of size N . This system can be solved recursively in an almost linear time (O(N logN)...
متن کاملFast and Oblivious Convolution Quadrature
We give an algorithm to compute N steps of a convolution quadrature approximation to a continuous temporal convolution using only O(N logN) multiplications and O(logN) active memory. The method does not require evaluations of the convolution kernel, but instead O(logN) evaluations of its Laplace transform, which is assumed sectorial. The algorithm can be used for the stable numerical solution w...
متن کاملFree Vibration Analysis of 2D Functionally Graded Annular Plate considering the Effect of Material Composition via 2D Differential Quadrature Method
This study investigates the free vibration of the Two-Dimensional Functionally Graded Annular Plates (2D-FGAP). The theoretical formulations are based on the three-dimensional elasticity theory with small strain assumption. The Two-Dimensional Generalized Differential Quadrature Method (2D-GDQM) as an efficient and accurate semi-analytical approach is used to discretize the equations of motion ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 263 شماره
صفحات -
تاریخ انتشار 2014